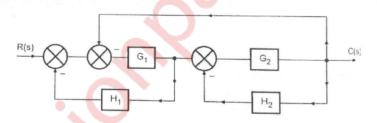
Paper / Subject Code: 32602 / Mechanical Measurements and Control T.E. SEM V / MECH / CHOICE BASE / NOV 2018 / 22.11.2018

(3 Hours)

[Total marks: 80]

5


5

5

8

Instructions:

- 1. Question 1 compulsory.
- 2. Schematic Diagrams/sketches carry weightage.
- 3. Attempt any three questions from the remaining five questions.
- 4. Assume suitable data, if necessary.
- Q1) a) Temperature measurement devices, Enlist contact and non-contact types that are widely 5 used in Industry and social life. Give their merits and demerits based on technology and handling of gazettes w.r.t. applications.
 - b) Differentiate between open and closed loop system with example.
 - c) What is the resolution in degrees of an encoder with 6 tracks? The number of increments per revolution is 2⁶.
 - d) Comment on the stability for a given CE of a system $S^6+2+3s^5+6s^3+4s^4+5s^2+3s=0$ 5
- Q2) a) Obtain the Transfer function for the Block diagram using Standard Block reduction rules

- b) A strain gauge has gauge factor of 4. If the strain gauge is attached to a metal bar that stretches from 0.25m to 0.255m when strained, what is the percentage change in resistance? If the unstrained value of gauge is 120Ω , what is the resistance valve of gauge after application of strain?
- c) Illustrate the working principle for displacement measurement using "L.V.D.T."
- Q3) a) Enumerate the types of pressure measurement devices w.r.t. levels i.e. low, medium and high pressures to be measured. State the working principle for each pressure level with example.
 - b) What are the different temperature compensation techniques used in the measurement of strain using strain gauges? Explain any two method's in details.
- Q4) a) Illustrate a mathematical model for a thermal system given in the **fig: 1** and represent its transfer function. The bath temperature is θ_i and temperature indicated by thermometer is θ_0 .

58678

TURN OVER

Paper / Subject Code: 32602 / Mechanical Measurements and Control

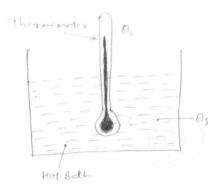


Fig: 1

- b) A system is given by differential equation, $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 8y = 8x$, 10 where y = output and x = input. Determine all time domain specifications for unit step input and plot the response curve.
- Q5) a) Addition of Zeros in the numerator of a given system G(s) H(s) improves the stability of the system, then If (S + 4) is a zero added to a given system G(s) H(s) = K / s (s² + 2s +2) (K, in numerator is a constant), Sketch the root locus and comment on its stability.
 - b) A servomechanism is designed to keep a radar antenna pointed at a flying aeroplane. If the aeroplane is flying with a velocity of 600 km/hr, at a range of 2 km and the maximum tracking error is to be within 0.1°. Determine the required velocity error coefficient.
- Q6) a) What do you understand by a State-space modeling of a system? Define state space and state variables.
 - b) Write a short note on PID controller.
 - c) A feedback system has G(s) H(s) = 100 (s+4) / s (s+0.5) (s+10). Determine GM, PM, ω_{gc} 10 and ω_{pc} . Draw Bode plot and comment on its stability.

5